Bayesian Optimization Algorithms for Multi-objective Optimization

نویسندگان

  • Marco Laumanns
  • Jiri Ocenasek
چکیده

In recent years, several researchers have concentrated on using probabilistic models in evolutionary algorithms. These Estimation Distribution Algorithms (EDA) incorporate methods for automated learning of correlations between variables of the encoded solutions. The process of sampling new individuals from a probabilistic model respects these mutual dependencies such that disruption of important building blocks is avoided, in comparison with classical recombination operators. The goal of this paper is to investigate the usefulness of this concept in multi-objective optimization, where the aim is to approximate the set of Pareto-optimal solutions. We integrate the model building and sampling techniques of a special EDA called Bayesian Optimization Algorithm, based on binary decision trees, into an evolutionary multi-objective optimizer using a special selection scheme. The behavior of the resulting Bayesian Multi-objective Optimization Algorithm (BMOA) is empirically investigated on the multi-objective knapsack problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS

In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...

متن کامل

Multi-objective optimization of nanofluid flow in microchannel heat sinks with triangular ribs using CFD and genetic algorithms

Abstract In this paper, multi-objective optimization (MOO) of Al2O3-water nanofluid flow in microchannel heat sinks (MCHS) with triangular ribs is performed using Computational Fluid Dynamics (CFD) techniques and Non-dominated Sorting Genetic Algorithms (NSGA II). At first, nanofluid flow is solved numerically in various MCHS with triangular ribs using CFD techniques. Finally, the CFD data will...

متن کامل

OPTIMAL DESIGN OF TRUSS STRUCTURES BY IMPROVED MULTI-OBJECTIVE FIREFLY AND BAT ALGORITHMS

The main aim of the present paper is to propose efficient multi-objective optimization algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which have been recently developed for single-objective optimization. In order to produce a well distributed Pareto front, some improvement...

متن کامل

A FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS

The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...

متن کامل

Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm

Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...

متن کامل

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002